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The problem of a noninteracting Fermi gas in a finite square-well potential is solved an-
alytically in the limit that the well becomes infinitely wide. The errors of previous authors
using this model as a first approximation to the problem of a simple metal with surfaces are

pointed out.

A very simple model which has been used to rep-
resent electrons in a simple metal with surfaces is
a noninteracting Fermi gas in a square-well poten-
tial, Bardeen' was probably the first to use this
model in his paper on the theory of the work func-
tion. He used the wave functions of this model to
calculate the exchange potential across the surface.
Huntington? used the same model to calculate the
surface energy of a simple metal in a first approxi-
mation. More recently, Lang and Kohn® based their
more sophisticated calculation of the surface energy
and the work function of some metals at least in
part on this model, and on the work of Bardeen and
of Huntington. It is the purpose of this paper to
calculate the exact analytic solution to this problem,
since, as will be shown, incorrect assumptions
about the density of states and the normalization of
the wave functions of the problem have led to errors
in some of the above work.

We shall define the problem somewhat differently
than has been done previously in order to show the
exact quantum-mechanical solution of the Schro-
dinger equation with the proper boundary conditions.
The coordinates of the problem are such that the x
axis is perpendicular to the “surfaces.” The

Schrodinger equation for the problem is
-3 VAE(X)+ V() ¥ X) = g ¥3(X) (1)
with the potential

V(x)={0’ ~L<x<L

v, x<—=-L, x>L .

The y and z coordinates are parallel to the sur-
faces, and periodic boundary conditions are applied
to these coordinates. The wave functions for the
problem have plane-wave form in the y and z coordi-
nates with a period L:

\I';(S{.) =(1/L)e*® ey, (x) .

The x component of the wave functions can be either
even or odd:

(N )Y2cosk,x , -L<x<L
wk*(x)zg(Nh)llzcosk,,Lexp[—(2V—kf)1/2|x..L|],
x<=L, x>L
" (;;):{ (Nk_)II/IZSi.nk_x, -L<x<L
- (N, )/2sink L exp[ - (2V -k3"2[x - L|],

x<-L, x>L
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where we have
Ny, =[L+1/(2V -R3)!2]" . (2)

The wave vectors are determined by the transcen-
dental equations

cos®,L=k2/2V ,
sin%_L=r2/2V ,

tank,L >0
tank_L <0 .

)

The fact that the wave vector appears in the nor-
malization will not in this case affect the results
which we are deriving here and we could as well
have used the approximation N,=1/L for the limit
of large L. Ignoring this small correction to the
normalization led Bardeen and later Huntington to
an incorrect connection between the well depth and
the total number of electrons in the well. This re-
lation [Eq. (26) in Bardeen’s paper or Eq. (2) in
Huntington’s] is expressed in terms of the distance
between the edge of the potential well and surface

as determined by the charge-conservation condition.

We are interested here in calculating two results,
the “surface” energy and the charge density as a
function of position. The surface energy is the dif-
ference between the energy of this system and an
equivalent number of Fermions in a uniform gas
with the same Fermi level, per unit of surface
area. These are given as follows:

3
B A ((en- 3)

z @
(=24 3( 2 wp-ww/ T 63 -0),

rékp k<kp

plx)= -2—< Z (%% —kz)lll’lz (x)|2
P D w-plwlt) .
ky<kp

In the limit of large L, we may convert these

|

f‘(wv;lz + 6(21;/)3”)] dap

GGG
,[ [ 4‘1%( 2V)1F+6(2;)ar)]dp}/ z[kg- okaz_

BotT 2L
. szF [qa_z( q° + g*
F ) L\ (2v)72 " 6(2v)*/2
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sums to integrals. Some care is necessary, how-
ever, since the &’s do not form an evenly spaced
set. Another way of saying this is that the density
of states in k& space is not constant. A simple way
of dealing with this difficulty is to express the &’s
in terms of the evenly spaced sets: g =nn/L for the
odd functions, and p = (# — 3)7/L for the even func-
tions. Here, # is a positive integer. The proper
relations between k_ and g between %, and p are
found from Egs. (3). For the even functions, we
have

cosk,L =xsin(p -k, )L =xk, /(2V)}/?

e ke R
@V~ (2v)172 7 (2v)*2 ’
which to first order in 1/L gives

k,=p[1-1/L(2V)}/2] -p®/6L(2V)%/2 . (6)

(p k)L =sin™

The upper sign goes with odd values of n, the lower
with even values. By the same process, one can
find an identical relationship between k_ and q. Now
in going from the sum to an integral over p or ¢,
we need only include the constant density of states
L/w.

The next important consideration in going from
the sums to integrals is choosing the correct limits
of integration. For the even functions the integra-
tion goes from 0 to m where m =p o +7/2L. Pprax
is the highest occupied even state. For the odd
states there is no ¢ =0 term, so the limits of inte-
gration are from /2L to m = n/2L depending on
whether the highest occupied state is even or odd.
The relationship between m and k is that kp=
+8/L where [- 37 -1/(2V)*/2]< <[5 7 - 1/(2V)*/2].

In the surface energy, it turns out that we need
only go to first order in 1/L to obtain the correct
result in the limit of large L. It also turns out that
if we simply take m =%y, the error in the surface
energy due to this approximation goes as 1/L2
Thus we have for the surface energy:

5((25:1/2 + 6(211)/;3’2> dP]

oo T s

kFN'/ZL 2 4 2
2 q q L
2 _ 2_ &
z[k"‘ f 1 L((zv)”?* 6(2v)°7 >dq] ) @

/2L

4
E,- 8%% [1+32%3 /105(2V)*/2] . @8)
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This expression is exact in the limit as L be-
comes large. It is quite different from the expres-
sion derived (incorrectly) by Huntington.
of kr and V characteristic of sodium (2 »=0.48 a. u.
and V=0. 2 a.u.) this expression gives E,=0.000 24
a.u. By comparison, Huntington found the value
0.00011 a.u. For whatever academic interest it
might have, the experimental value for sodium is
around 0.00014 a.u.

To obtain the charge density near the surface, we
must first make a transformation of coordinates.
Let £=L —x. This coordinate has its origin at the
potential discontinuity and is positive toward the in-
side of the system. Making this transformation in
the wave functions, we have for the interior solu-
tions

By, (€)= (N,,) /2 cos[,(L - )]
= (N,,*)Uz (cosk,L cosk,t +sink,L sink,t) .
Squaring this and using the relations (3) we have

kZ

[, (8] 2=Nk*[<-‘;— 1) cos?hk,t + %(w —R2)L/2

kZ
Xsin2k,t +1 - -27] (9)

1
3 ! n+l

For values

(4n—- 21 +5)l cos2kpt
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An identical relation is obtained for the odd func-
tions.

Since we are looking for a zero-order effect in
1/L, we need to keep only terms which are to zeroth
order in 1/L. Thus, both sums in Eq. (5) convert
to identical integrals with the same limits of inte-
gration, and the charge density is

3
1 F 2 2
p(&)= ?[ (2 -kﬂ[(’%,— —1) cos%t +1 -;’-V]dk

kp
+ —1—2 (k2 - k%) (2V - k) 2sin(2kE)k dE .
2Vr o

(10)

The first integral is straightforward and gives the
result

ky 1 kF< k_%)coszk,.g 5k% 1\ sin2kp¢
3_7;%"”?[4 -5 )% 8 "8) ¢

3kr cos2kpé 3 sin2kpf
Ty TR v £ ] (11)

For the second integral, since %% is always less
than 2V, we can expand the square root as a power
series in £2/2V. The integral can then be done
term by term, giving the result as a double sum:

2(zv)1 Z(;, 1G-n)! ,ZE, (2v)"(2n - 21 +2)12%

22 (-1 (2m+1)! (
(2n - 21 + 3)£2TH1

_(21+1)(2n=-1+2) sm2k,,-£>
Zk §21+2

The summations can be interchanged, and the [ =0 term extracted to give the result to second order in 1/¢:

3 ﬁ)”zsinZkFg °°
" 273 (2v)7? (1 v 2 41r2(2V)17E 2 2

=1-1 nl(%

31 RE2 %2 1) !

(-1) —n)1(2V)"228" (24 - 21 + 2)!

y ( 21 (4n — 21+ 5)k pcos2kpt

(2n - 21 +3)g%™

From (11) and (12) we can now give the expression

to lowest order in 1/¢ for the charge density. This
expression gives the form of the charge-density
oscillations as they first appear when approaching
the potential discontinuity from the inside and is
valid only when 1/£2>1/¢%:

(&)= I3 , ke cosZpt _kycos2k gk
P 372 T 4q%2 47°vET

RE(2V - kF)1/2s1n2kF§

X
47%yE2

(18)

If we let y=sin™[k/(2V)¥2], Eq. (13) can be
put in the form more usually seen

(5)- kp kF cosZ(kFg +7F)

4n%

It is interesting that in the limit of large L, the

(14)

—(2+1)(2n -2 +2) 5"{—,2kTFg—> (12)

[
corrections to the normalization and density of
states shown here do not affect results for the
charge-density oscillations near the surface, nor
would they affect the total energy of the crystal with
surfaces. The correction comes to the surface en-
ergy which requires that terms be retained to first
order in 1/L, since the zeroth-order terms cancel.

The results of this paper would be purely aca-
demic were it not for the fact that the model solved
here is fairly commonly used as a first approxima-
tion to electrons in a metal or even a semiconductor
at a plane discontinuity. The model is not very
good, of course, since it ignores even the Hartree
potential, not to mention exchange and other many-
body interactions. The other difficulty with this
model is that discontinuities in potential of this type
simply do not exist in nature.
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A general formalism is developed by means of which the radiative heat transfer between
macroscopic bodies of arbitrary dispersive and absorptive dielectric properties can be evalua-
ted. The general formalism is applied to the heat transfer across a vacuum gap between two
identical semi-infinite bodies at different temperatures. The peculiarities arising when the gap
width is of the order of, or smaller than, the dominant thermal radiation wavelengths are
studied and quantitatively evaluated for the case of two metal bodies. The predicted strong in-
crease with diminishing gap width is in qualitative agreement with experimental results.

I. INTRODUCTION

Consider a set of bodies of macroscopic dimen-
sions with arbitrary dispersive and absorptive
dielectric properties. These bodies emit thermal
radiation depending on the local temperature. With
the aid of the fluctuation-dissipation theorem and
electromagnetic theory we shall derive a formula
for the heat flux at an arbitrary point due to the
radiating bodies. Integration of this heat flux over
a closed surface gives the net power dissipated in
the absorbing matter contained in the enclosed
volume.

By this method we intend to determine and dis-
cuss the net heat transfer between two semi-in-
finite absorbing bodies with arbitrary dielectric
properties at slightly different temperatures
separated by vacuum of width d. The heat trans-
fer between closely spaced bodies differs from
that when the spacing is large for two reasons.
Firstly, when the separation d is comparable to,
or smaller than, the dominant vacuum wavelengths
at the temperatures considered, interference
effects must be expected in the waves multiply re-
flected between the two surfaces. Secondly, the
evanescent fields normally present in thermal
equilibrium at the outer surface of each body can
reach over to the opposite body and transfer energy
if the distance is sufficiently small. As will be
explicitly shown for metal bodies, the latter

mechanism of energy transfer is the dominant one
for small distances, giving rise to a strong in-
crease of heat transfer with decreasing d.

Rytov has developed a treatment of problems of
this kind. Rytov’s work and ours differ in the
following respects. One difference is merely
formal: Rytov starts from random thermal exciting
electromagnetic fields, for which he writes down
a correlation function, in which a constant factor C
appears. In Ref. 1, C is determined a posteriori
by reproducing Kirchhoff’s law for radiation emit-
ted into vacuum. In Ref. 2, C is obtained from
Nyquist’s formula, and a discussion of the zero
correlation radius used by him (and by us) appears.
In our work we take electric currents rather than
fields as the random thermal sources and use the
fluctuation-dissipation theorem to determine their
statistical properties; this rather simplifies the
formal treatment.

The second difference is that Rytov’s study of
the heat transfer across a gap is confined to the
case of one semi-infinite absorbing body at tem-
perature T separated by vacuum from an almost
perfect mirror at zero temperature: The mirror
is described by the approximate boundary condi-
tions of Leontovich, which state that the magnetic
fields are the same as if the mirror were perfect.
In our work we study the heat transfer between two
arbitrary identical semi-infinite bodies at dif-
ferent temperatures, while exact baundary con-



